
Signing and Encryption with GnuPG

Steve Revilak
http://www.srevilak.net/wiki/Talks

Cryptoparty @ Northeastern Law School

Feb. 9, 2014

1 / 23

What is GnuPG?

I GnuPG is a free software implementation of the OpenPGP
standard.

I PGP stands for Pretty Good Privacy

I PGP is a system for encrypting data, and for creating digital
signatures (aka signing).

I Commonly used for Email, but can be used with any type of
file.

I PGP can take a little work to set up. After that, it’s easy to
use.

I Today, we’ll try to help you with the setup part.

2 / 23

Where do I get GnuPG?

Mac OS https://gpgtools.org/

Windows http://gpg4win.org/

Linux GnuPG may already be installed. If not, use your
package manager (yum, apt-get, zypper, synaptic,
aptitude, etc.) to install it.

3 / 23

https://gpgtools.org/
http://gpg4win.org/

A brief introduction to keys

Objective: Alice wants to (securely) send a file to Bob.

I Alice encrypts the file with a password

I Alice sends the encrypted file to Bob

I Bob gets the encrypted file, but . . .

I How does Alice (securely) get the password to Bob?

I This is the dilemma with password-based encryption.

Public key cryptography avoids this problem entirely. Instead of
passwords, you can use public and private keys (which GnuPG
does).

4 / 23

Public and Private Keys

In order to do anything with PGP, you’ll need a key. Keys exist as
a pair, called a keypair.

I There’s a public key. You share this with everyone (because
it’s public).

I There’s a private key, sometimes called a secret key. Don’t
share this with anyone (because it’s a secret).

The private key will “undo” what the public key does, and vice
versa; think of them as inverse functions. If a public key encrypts a
message, then the corresponding private key decrypts it.

Now,

I Alice can encrypt the file with Bob’s public key.

I Bob decrypts the file with his private key.

5 / 23

What can you do with a key?

Keys allow you to encrypt and sign messages.

Encryption The purpose is to ensure that a message is readable
only by someone possessing a specific private key.

Signing Guarantees that a message was sent by someone with
a specific private key (and wasn’t subsequently
altered).

(Here I use the term “message” in a very generic sense – it could
be an email message, a file, or any arbitrary piece of data).

Leap of faith: You need some level of trust that a particular key
belongs to a particular person.

6 / 23

Goals for this part of the workshop

I Generate a keypair (if you don’t already have one).

I Upload your public key to a keyserver
I Download my public key.

I Set up your mail program to send and receive signed and
encrypted email.
(Mail program = Mail User Agent, or MUA)

I Send me a signed and encrypted message. (I should be able
to decrypt your message, and verify your signature.)

I I’ll respond with a signed and encrypted message. (You should
be able to decrypt my message and verify my signature.)

7 / 23

Generating a Keypair

Everything here can be done with GUI tools; I’m giving
command-line equivalents for reference.

I Generate a key (if you don’t already have one).
gpg --gen-key

Choose RSA, RSA. Use the longest key possible (4096 bits).

I Upload your key to a keyserver.
gpg --send-key KEYID

I Download my public key.
gpg --search steve@srevilak.net OR
gpg --recv-key 28C2A300

8 / 23

Mail Client Basics

Sending:

I You’ll use a protocol called SMTP, or Simple Mail Transfer
Protocol.

Receiving:

I Two options: IMAP (Internet Mail Access Protocol), or POP
(Post Office Protocol)

I IMAP stores all messages on your ESP’s mail server. You can
move them to local folders, but you have to do this explicitly.

I POP downloads mail from your ESP’s mail server. By default,
the server copy is deleted; you can also configure your mail
client to leave it on the server.

I If you have a lot of mail on the server, the initial
synchronization might take a while, especial with POP.

9 / 23

Configuring your MUA (GMail)

GMail:

I Enable IMAP or POP in Gmail’s web interface.

I Sending: smtp.gmail.com, port 587, use SSL

I Receiving: imap.gmail.com, port 993, use SSL; OR
pop.gmail.com, port 995, use SSL

I For help, see https://support.google.com/mail/

troubleshooter/1668960?hl=en&ref_topic=1669040

10 / 23

https://support.google.com/mail/troubleshooter/1668960?hl=en&ref_topic=1669040
https://support.google.com/mail/troubleshooter/1668960?hl=en&ref_topic=1669040

Configuring your MUA (Hotmail)

Hotmail:

I Enable POP/IMAP in outlook.com’s web interface

I Sending: smtp-mail.outlook.com, port 587, use TLS

I Receiving: imap-mail.outlook.com, Port 993, use SSL; OR
pop-mail.outlook.com, port 995, SSL

I For help, see http://windows.microsoft.com/en-us/

windows/outlook/send-receive-from-app

11 / 23

http://windows.microsoft.com/en-us/windows/outlook/send-receive-from-app
http://windows.microsoft.com/en-us/windows/outlook/send-receive-from-app

Configuring your MUA (Yahoo)

Yahoo:

I POP is only available for Yahoo Plus Accounts

I Sending: smtp.mail.yahoo.com, port 587, use SSL

I Receving: pop.mail.yahoo.com, port 995, use SSL; OR
imap.mail.yahoo.com, port 993, use SSL

I For help, see http://help.yahoo.com/kb/index?page=

content&y=PROD_MAIL_ML&locale=en_US&id=SLN4075

12 / 23

http://help.yahoo.com/kb/index?page=content&y=PROD_MAIL_ML&locale=en_US&id=SLN4075
http://help.yahoo.com/kb/index?page=content&y=PROD_MAIL_ML&locale=en_US&id=SLN4075

Sending and receiving mail

I We’ll take this one step at a time.

I Send me a signed and encrypted message.

I Open your Sent Mail folder. Make sure you can read the
encrypted message that you just sent!

I I’ll respond. Work on downloading, decrypting, and reading
my message. Be sure to verify the signature.

13 / 23

Backing up your keys

If you lose your private key, then forget about decryption. A lost
private key cannot be recovered!

I Backup your private key
gpg -a --export-secret-keys KEYID > private-key.asc

Store a copy of private-key.asc in a safe place. For example,
keep electronic and printed copies in a safe deposit box.

14 / 23

Revocation Certificates

What if (say) your laptop is stolen, and you lose your private key?
If this happens, you’ll want to revoke your key.

I Generate a revocation certificate
gpg -a --gen-revoke KEYID > pgp-revoke.asc

Uploading the revocation certificate (to a keyserver) “cancels”
your key.

Note: you cannot generate a revocation certificate without a
private key! Keep the revocation certificate in a safe place.

15 / 23

Trusting and Signing Keys (1)

How do you know that a given key belongs to a given person? You
check the key’s fingerprint. Here’s my fingerprint:

gpg --fingerprint 28C2A300

...

Key fingerprint = 6F09 15FF 59CE E093 56F4

BEEC E772 7C56 28C2 A300

The fingerprint uniquely identifies a PGP key. If the fingerprints
match, you’ve got the right one.

Note: the key id matches the last eight characters of the
fingerprint.

16 / 23

Trusting and Signing Keys (2)

Signing a key indicates that you trust it.

I gpg --sign-key 28C2A300 OR
gpg --lsign-key 28C2A300

--lsign-key makes a local signature; it’s only visible to you.

To distribute a non-local (--sign-key) signature:

I Send it to a key server:
gpg --send-key 28C2A300

I Export the key (containing your signature), and send it to the
key holder.
gpg -a --export 28C2A300 > signed-key.asc

The key holder will gpg --import signed-key.asc to import
your signature.

17 / 23

Some Advanced Tips

$HOME/.gnupg/gpg.conf is GnuPG’s configuration file. Some
things you should consider adding:

Sign keys using SHA256, instead of SHA1

cert-digest-algo SHA256

Sign messages using SHA256, too

personal-digest-preferences SHA256

Set stronger preferences on newly-generated keys

Put this all on one line.

default-preference-list SHA512 SHA384 SHA256 SHA224 \
AES256 AES192 AES CAST5 ZLIB BZIP2 \
ZIP Uncompressed

18 / 23

More Advanced Tips

Change the preferences of your existing key, to match the
default-preference-list in the previous slide.

See instructions at
http://www.apache.org/dev/openpgp.html.

Tip: It doesn’t hurt to back up your key before trying this.

19 / 23

http://www.apache.org/dev/openpgp.html

GnuPG Wrap Up

I PGP protects your privacy through encryption.

I PGP provides non-repudiation through digital signatures.

I PGP is something that you can (and should!) use every day.

I GnuPG is a free software implementation of a public standard.
Remember: it’s hard to backdoor software when the source
code is public.

20 / 23

PGP Resources

I GnuPG: http://gnupg.org/

I GPG4win: http://www.gpg4win.org/

I GPG Tools: http://gpgtools.org/

I Riseup.net’s Best practices for OpenPGP:
https://we.riseup.net/riseuplabs+paow/

openpgp-best-practices

I Cryptoparty handbook:
https://www.cryptoparty.in/documentation/handbook

I Surveillance Self-Defense: https://ssd.eff.org/

21 / 23

http://gnupg.org/
http://www.gpg4win.org/
http://gpgtools.org/
https://we.riseup.net/riseuplabs+paow/openpgp-best-practices
https://we.riseup.net/riseuplabs+paow/openpgp-best-practices
https://www.cryptoparty.in/documentation/handbook
https://ssd.eff.org/

And Finally . . . Call your Legislators

I Oppose TPP Fast Track

I Support the USA Freedom Act (“Uniting and Strengthening
America by Fulfilling Rights and Ending Eavesdropping,
Dragnet Collection, and Online Monitoring Act”)

I Support HR 3982 - Open Internet Preservation Act of 2014

I Support MA Bill S.1664 - An Act to regulate the use of
unmanned aerial vehicles

Not sure how to contact your legislators? Go to
http://WhereDoIVoteMA.com.

22 / 23

http://WhereDoIVoteMA.com

And Finally . . . LibrePlanet

I March 22–23, 2014

I MIT Stata Center

I Free Software, Free Society

I http://libreplanet.org/2014

23 / 23

http://libreplanet.org/2014

